• Rodricks, D. J., Patil, S., Pulido, P. & Colwell, C. W. Press-fit condylar design total knee arthroplasty. Fourteen to seventeen-year follow-up. J. Bone Joint Surg. Am. 89, 89–95 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Vessely, M. B., Whaley, A. L., Harmsen, W. S., Schleck, C. D. & Berry, D. J. The Chitranjan Ranawat Award: Long-term survivorship and failure modes of 1000 cemented condylar total knee arthroplasties. Clin. Orthop. Relat. Res. 452, 28–34 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Assiotis, A., To, K., Morgan-Jones, R., Pengas, I. P. & Khan, W. Patellar complications following total knee arthroplasty: A review of the current literature. Eur. J. Orthop. Surg. Traumatol. 29(8), 1605–1615 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Berend, M. E., Ritter, M. A., Keating, E. M., Faris, P. M. & Crites, B. M. The failure of all-polyethylene patellar components in total knee replacement. Clin. Orthop. Relat. Res. 388, 105–111 (2001).

    Article 

    Google Scholar 

  • Collier, J. P., McNamara, J. L., Surprenant, V. A., Jensen, R. E. & Surprenant, H. P. All-polyethylene patellar components are not the answer. Clin. Orthop. Relat. Res. 273, 198–203 (1991).

    Google Scholar 

  • Becher, C. et al. Posterior stabilized TKA reduce patellofemoral contact pressure compared with cruciate retaining TKA in vitro. Knee Surg. Sports Traumatol. Arthrosc. 17(10), 1159–1165 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Browne, C., Hermida, J. C., Bergula, A., Colwell, C. W. Jr. & D’Lima, D. D. Patellofemoral forces after total knee arthroplasty: Effect of extensor moment arm. Knee 12(2), 81–88 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Harato, K. et al. Midterm comparison of posterior cruciate-retaining versus -substituting total knee arthroplasty using the Genesis II prosthesis. A multicenter prospective randomized clinical trial. Knee 15(3), 217–221 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Kainz, H., Reng, W., Augat, P. & Wurm, S. Influence of total knee arthroplasty on patellar kinematics and contact characteristics. Int. Orthop. 36(1), 73–78 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Kaneko, T. et al. The influence of compressive forces across the patellofemoral joint on patient-reported outcome after bi-cruciate stabilized total knee arthroplasty. Bone Joint J. 100-B(12), 1585–1591 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leichtle, U. G. et al. Increased patellofemoral pressure after TKA: An in vitro study. Knee Surg Sports Traumatol. Arthrosc. 22(3), 500–508 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Tanikawa, H., Tada, M., Harato, K., Okuma, K. & Nagura, T. Influence of total knee arthroplasty on patellar kinematics and patellofemoral pressure. J. Arthroplasty 32(1), 280–285 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Verborgt, O. & Victor, J. Post impingement in posterior stabilised total knee arthroplasty. Acta Orthop. Belg. 70(1), 46–50 (2004).

    PubMed 

    Google Scholar 

  • Kawahara, S. et al. Upsizing the femoral component increases patellofemoral contact force in total knee replacement. J. Bone Joint Surg. Br. 94(1), 56–61 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ali, A. A., Mannen, E. M., Rullkoetter, P. J. & Shelburne, K. B. In vivo comparison of medialized dome and anatomic patellofemoral geometries using subject-specific computational modeling. J. Orthop. Res. 36(7), 1910–1918 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leichtle, U. G. et al. Influence of different patellofemoral design variations based on genesis II total knee endoprosthesis on patellofemoral pressure and kinematics. Appl. Bionics Biomech. 2017, 5492383 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuriyama, S. et al. Tibial rotational alignment was significantly improved by use of a CT-navigated control device in total knee arthroplasty. J. Arthroplasty 29, 2352–2356 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Mizu-uchi, H. et al. The evaluation of post-operative alignment in total knee replacement using a CT-based navigation system. J. Bone Joint Surg. Br. 90, 1025–1031 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barrett, W. P. et al. Comparison of radiographic alignment of imageless computer-assisted surgery vs conventional instrumentation in primary total knee arthroplasty. J. Arthroplasty 26, 1273–1284 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Bauer, L. et al. Secondary patellar resurfacing in TKA: A combined analysis of registry data and biomechanical testing. J. Clin. Med. 10, 1227 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fitzpatrick, C. K., Clary, C. W. & Rullkoetter, P. J. The role of patient, surgical, and implant design variation in total knee replacement performance. J. Biomech. 45, 2092–2102 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Innocenti, B., Pianigiani, S., Labey, L., Victor, J. & Bellemans, J. Contact forces in several TKA designs during squatting: A numerical sensitivity analysis. J. Biomech. 44, 1573–1581 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Colwell, C. W. Jr., Chen, P. C. & D’Lima, D. Extensor malalignment arising from femoral component malrotation in knee arthroplasty: Effect of rotating-bearing. Clin. Biomech. 26, 52–57 (2011).

    Article 

    Google Scholar 

  • Hada, M. et al. Bi-cruciate stabilized total knee arthroplasty can reduce the risk of knee instability associated with posterior tibial slope. Knee Surg. Sports Traumatol. Arthrosc. 26, 1709–1716 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Okamoto, S. et al. Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J. Arthroplasty 30, 1439–1443 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Nakamura, S. et al. Superior-inferior position of patellar component affects patellofemoral kinematics and contact forces in computer simulation. Clin. Biomech. 45, 19–24 (2017).

    Article 

    Google Scholar 

  • Kuriyama, S. et al. Posterior tibial slope and femoral sizing affect posterior cruciate ligament tension in posterior cruciate-retaining total knee arthroplasty. Clin. Biomech. 30, 676–681 (2015).

    Article 

    Google Scholar 

  • Mizu-Uchi, H. et al. The importance of bony impingement in restricting flexion after total knee arthroplasty: Computer simulation model with clinical correlation. J. Arthroplasty 27, 1710–1716 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Mizu-Uchi, H. et al. Patient-specific computer model of dynamic squatting after total knee arthroplasty. J. Arthroplasty 30, 870–874 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blankevoort, L., Kuiper, J. H., Huiskes, R. & Grootenboer, H. J. Articular contact in a three-dimensional model of the knee. J. Biomech. 24, 1019–1031 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • D’Lima, D. D. et al. Quadriceps moment arm and quadriceps forces after total knee arthroplasty. Clin. Orthop. Relat. Res. 392, 213–220 (2001).

    Article 

    Google Scholar 

  • Bellemans, J., Robijns, F., Duerinckx, J., Banks, S. & Vandenneucker, H. The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 13, 193–196 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shi, X. et al. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 21, 2696–2703 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Sharma, A. et al. In vivo patellofemoral forces in high flexion total knee arthroplasty. J. Biomech. 41, 642–648 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Giffin, J. R. et al. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am. J. Sports. Med. 35, 1443–1449 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Petrigliano, F. A., Suero, E. M., Voos, J. E., Pearle, A. D. & Allen, A. A. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee. Am. J. Sports Med. 40, 1322–1328 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Barrack, R. L., Schrader, T., Bertot, A. J., Wolfe, M. W. & Myers, L. Component rotation and anterior knee pain after total knee arthroplasty. Clin. Orthop. Relat. Res. 392, 46–55 (2001).

    Article 

    Google Scholar 

  • Nicoll, D. & Rowley, D. I. Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J. Bone Joint Surg. Br. 92, 1238–1244 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Panni, A. S. et al. Tibial internal rotation negatively affects clinical outcomes in total knee arthroplasty: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 26, 1636–1644 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Nakagawa, T. H., Serrão, F. V., Maciel, C. D. & Powers, C. M. Hip and knee kinematics are associated with pain and self-reported functional status in males and females with patellofemoral pain. Int. J. Sports Med. 34, 997–1002 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kuriyama, S., Ishikawa, M., Furu, M., Ito, H. & Matsuda, S. Malrotated tibial component increases medial collateral ligament tension in total knee arthroplasty. J. Orthop. Res. 32, 1658–1666 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Matziolis, G., Krocker, D., Weiss, U., Tohtz, S. & Perka, C. A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J. Bone Joint Surg. Am. 89, 236–243 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Lützner, J., Krummenauer, F., Wolf, C., Günther, K. P. & Kirschner, S. Computer-assisted and conventional total knee replacement: A comparative, prospective, randomised study with radiological and CT evaluation. J. Bone Joint Surg. Br. 90, 1039–1044 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Parratte, S. et al. Rotation in total knee arthroplasty: No difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol. Arthrosc. 21, 2213–2219 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Saffi, M., Spangehl, M. J., Clarke, H. D. & Young, S. W. Measuring tibial component rotation following total knee arthroplasty: What is the best method?. J. Arthroplasty 34(7S), S355-360 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Singerman, R., Dean, J. C., Pagan, H. D. & Goldberg, V. M. Decreased posterior tibial slope increases strain in the posterior cruciate ligament following total knee arthroplasty. J. Arthroplasty 11, 99–103 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • By AKDSEO